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Summary 

The occurrence of extreme water level events along low-lying, highly populated and/or 

developed coastlines can lead to devastating impacts on coastal infrastructure. Therefore it 

is very important that the probabilities of extreme water levels are accurately evaluated to 

inform flood and coastal management and for future planning. The aim of this study was to 

provide estimates of present day extreme total water level exceedance probabilities around 

the whole coastline of Australia, arising from combinations of mean sea level, 

astronomical tide and storm surges generated by both extra-tropical and tropical storms, 

but exclusive of surface gravity waves.  

 

The study has been undertaken in two main stages. In the first stage, a high-resolution (~10 

km along the coast) hydrodynamic depth averaged model has been configured for the 

whole coastline of Australia using the Danish Hydraulics Institute’s Mike21 modelling 

suite of tools. The model has been forced with astronomical tidal levels, derived from the 

TPX07.2 global tidal model, and meteorological fields, from the US National Center for 

Environmental Prediction’s global reanalysis, to generate a 61-year (1949 to 2009) 

hindcast of water levels. This model output has been validated against measurements from 

30 tide gauge sites around Australia with long records. At each of the model grid points 

located around the coast, time series of annual maxima and the several highest water levels 

for each year were derived from the multi-decadal water level hindcast and have been 

fitted to extreme value distributions to estimate exceedance probabilities.  

 

Stage 1 provided a reliable estimate of the present day total water level exceedance 

probabilities around southern Australia, which is mainly impacted by extra-tropical storms. 

However, as the meteorological fields used to force the hydrodynamic model only weakly 

include the effects of tropical cyclones the resultant water levels exceedance probabilities 

were underestimated around western, northern and north-eastern Australia at higher return 

periods. Even if the resolution of the meteorological forcing was adequate to represent 

tropical cyclone-induced surges, multi-decadal periods yielded insufficient instances of 

tropical cyclones to enable the use of traditional extreme value extrapolation techniques. 

Therefore, in the second stage of the study, a statistical model of tropical cyclone tracks 

and central pressures was developed using histroic observations. This model was then used 
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to generate synthetic events that represented 10,000 years of cyclone activity for the 

Australia region, with characteristics based on the observed tropical cyclones over the last 

~40 years. Wind and pressure fields, derived from these synthetic events using analytical 

profile models, were used to drive the hydrodynamic model to predict the associated storm 

surge response. A random time period was chosen, during the tropical cyclone season, and 

astronomical tidal forcing for this period was included to account for non-linear 

interactions between the tidal and surge components. For each model grid point around the 

coast, annual maximum total levels for these synthetic events were calculated and these 

were used to estimate exceedance probabilities. The exceedance probabilities from stages 1 

and 2 were then combined to provide a single estimate of present day extreme water level 

probabilities around the whole coastline of Australia.  
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1 Introduction 

The occurrence of extreme water level events along low-lying, highly populated and/or 

developed coastlines can lead to devastating impacts on coastal infrastructure (Lowe et al., 

2010). The incidence of major storm surges in the last decade (i.e. those arising from 

hurricanes Katrina, Sidr, Nargis and Irene, or in the case of Australia, cyclone Yasi), have 

dramatically emphasized the destructive capabilities of extreme water level events 

(Menéndez and Woodworth, 2010).  

 

Throughout history, coastal settlers have had to adapt to periodic coastal flooding. 

However, as a society we have become increasingly vulnerable to extreme water level 

events as our cities and our patterns of coastal development become more intricate, 

populated and interdependent (Pugh, 2004; Nicholls et al., 2007). In addition to this, there 

is now a real and growing concern about rising sea levels. Over the last 150 years, global 

sea levels have on average risen by about 25 cm (Bindoff et al., 2007) and it is predicted 

that this rise will continue over the 21
st
 century (and beyond) at an accelerated rate (Meehl 

et al., 2007). With rises in sea level, given water levels will be exceeded more and more 

frequently as progressively less severe storm conditions are required to achieve that water 

level (Haigh et al., 2011a). In some coastal regions, extreme water levels could be 

amplified further by changes in storminess, such as more intense tropical cyclones, 

although there are still significant uncertainties regarding possible future changes in 

tropical and extra-tropical storm activity (Meehl et al., 2007; Seneviratne et al, 2012).  

 

Therefore it is very important that the exceedance probabilities of extreme water levels are 

accurately evaluated to inform flood and erosion risk-based management and for future 

planning. This report describes a study aimed at estimating present day extreme sea level 

exceedance probabilities due to tides, storm surges, tides and mean sea level (but exclusive 

of wind-waves) around the whole coastline of Australia. 
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2 Background 

In coastal flood and erosion risk management, the concepts of average recurrence intervals 

(ARI) or annual exceedance probabilities (AEP) are commonly used to convey information 

on the likelihood of rare events such as extreme water levels (Coles, 2001). ARI, also 

known as return periods, are an estimate of the average interval of time between events of 

a certain magnitude. The AEP is the probability that an event of a certain magnitude will 

occur in a particular year. These statistical concepts are often used to define design 

conditions for flood defences and other coastal and offshore structures. Ensuring they are 

accurately estimated is important to prevent catastrophic structure failures due to under-

design or expensive wastes due to over-design. 

 

Traditionally, ARI and AEP for high water levels have been calculated from tide-gauge 

measurements. However, there are two problems with this approach: (i) as a minimum ~30 

years of measurements are required to produce accurate estimates using the conventional 

extreme value analysis statistical methods (Haigh et al., 2010a); and, (ii) the probabilities 

of extreme water levels caused by large tropical cyclones (which influence the western, 

northern and north-eastern coastline of Australia) cannot be estimated solely on the basis 

of tide gauge records (Harper et al., 2001). 

 

In regards to the first issue, there are currently only 29 tide-gauge sites around Australia, 

the locations of which are shown in Figure 1, with records 30 years or longer. Extreme 

water levels arise as a combination of three main factors: mean sea level, astronomical tide 

and storm surge (Pugh, 2004) (Wind-waves can further elevate coastal sea levels (see 

O’Grady and McInnes, 2010) but their effect has not been considered in this study). The 

characteristics of these components vary significantly around the Australian coastline and 

hence the way in which they combine to generate high water levels differs for different 

parts of the coast. For example, the mean tidal range varies between about 0.5 and 10 m 

and the form (i.e. diurnal/semi-diurnal) of the tide also changes considerably around the 

coast (Pattiaratchi et al., in prep). In addition, the Australian coastline is subject to both 

tropical and extra-tropical cyclones. Further, the seasonal and inter-annual variations in 

mean sea level are large (up to 1 m) around parts of the coast and thus strongly influence 

the timing and magnitude of extreme events. Therefore, a simple interpolation of ARI 
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between the existing network of 29 tide-gauges will not accurately capture the spatial 

variation in extreme total water levels around the coast. More recent extreme value 

statistical methods have been introduced (see Haigh et al., 2010a) that allow water level 

ARI to be calculated using shorter tide-gauge records. However, even considering all of 

the shorter records from tide gauges located around the country would still not provide an 

adequate and uniform spatial map of water level ARI for the whole coastline of Australia.  

 

The second issue is that the probabilities of extreme water levels caused by large tropical 

cyclones cannot be estimated solely on the basis of tide gauge records. In tide gauge 

records, even those covering many decades to a century, there are often only a few 

observations of large tropical-cyclone-induced water levels. It is relatively rare that a 

tropical cyclone will pass close to a tide gauge site to generate a significant extreme water 

level and in addition, the response of the generated high water level is complex, localized 

and dependent on the timing of the astronomical tide (Harper et al., 2001). Further, when a 

severe cyclone makes landfall near to the tide gauge station, the recorded water level can 

often be significantly higher than any other water level recorded in the past. Therefore, 

using the observational record only to make extrapolation to very low probabilities of 

occurrence is inadequate (McInnes et al., 2009).  

 

Hydrodynamic numerical models can be used to overcome the first issue (i.e. poor spatial 

coverage of long observational data sets). Following the success of operational tide-surge 

modelling in many regions (Flather, 2000), hydrodynamic models have been used to 

improve understanding of water level characteristics. Until recently, majority of studies 

simulated water levels over a particular storm event or for a few tidal cycles (von Storch 

and Woth, 2008). It is only over the last decade that hydrodynamic models have been used 

to construct multi-decadal time series of historic total water levels (Lowe et al., 2010). 

Flather (1987) and Flather et al. (1998) were the first to estimate ARI continuously around 

a coastline (the UK), using individual simulations of several large storms and then multi-

decadal hindcasts of water levels, respectively, created by driving a barotropic (two-

dimensional depth averaged models) hydrodynamic model, validated against tide gauge 

measurements, with meteorological fields. Several other studies have produced multi-

decadal hindcasts of water levels (i.e. Langenberg et al. (1999) and Weisse and Plüβ 

(2006) for the North Sea; Bernier and Thompson (2006) for the North Atlantic; Sebastiao 
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et al. (2008) for the Atlantic coast of Europe; and, McMillan et al. (2011) for the British 

Isles) and the method has recently been applied to estimate extreme water level 

probabilities around southeast Australia (McInnes et al., 2009; McInnes et al., 2011a) and 

Tasmania (McInnes et al., 2011b). Hydrodynamic models have also been driven with 

meteorological fields from global climate models for past/present and future periods to 

examine the impact of anthropogenic climate change on the frequency of water level 

extremes for different regions (i.e. Flather and Smith, 1998; Langenberg et al., 1999; Lowe 

et al., 2001; Debernard et al., 2002; Lowe and Gregory, 2005; Woth, 2005; Woth et al., 

2006; Unnikrishnan et al., 2006) and this was done for parts of Australia by McInnes et al. 

(2009, 2011a, b) and Colberg and McInnes (2012). 

 

With respect to the second issue (i.e. estimating probabilities of extreme water level arising 

from tropical cyclones); the meteorological fields (usually from global reanalyses or 

climate models) that are currently used to force hydrodynamic models are too coarse 

spatially and temporally to adequately resolve tropical cyclones and thus significantly 

underestimate the likely storm surge. Even if the resolution was adequate to represent 

tropical cyclone-induced surges, the problem still remains that multi-decadal periods yield 

insufficient instances to enable the use of traditional extrapolation techniques (McInnes et 

al., 2009). To put it another way, whilst multi-decadal records reasonably sample the full 

population of extra-tropical storm events, much longer periods are required to adequately 

sample the population of tropical cyclone events, because by comparison they are rare and 

more localised. The approach that tends to be used is to develop statistical models of the 

tracks and central pressures of tropical cyclones from observations for specific areas 

(Harper et al., 2001). The statistical model is then used to generate synthetic events that 

represent many thousands of years of tropical cyclone activity (e.g. McInnes et al., 2003; 

James and Mason, 2005). Wind and pressure fields, derived from these synthetic events 

using analytical profile models (e.g. Holland, 1980), can then be used to drive 

hydrodynamic models to predict the associated surge response. The surges predicted for 

these synthetic events can be randomly combined with different tidal states and the 

generated time-series can be fitted to extreme value distributions to estimate extreme water 

level AEP. This approach has been used in many studies around Australia, particularly for 

the Queensland coast (see Harper et al. 2009).  
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The best available information on extreme total water levels is required for effective flood 

and erosion risk-based management (McMillan et al., 2011). In the context of Australia, 

the majority of past studies that have estimated water level AEP have done so on local or 

regional scales and hence the current information is not up to date and consistent around 

the country. Further, a wide range of different approaches has been used on different 

spatial resolutions. In addition to this, the coastline of Australia, similar to that of the US 

east coast (Zhang et al., 1997, 2000), is subject to both extra-tropical and tropical storms. 

Few, if any past studies in Australia (and elsewhere to our knowledge) have jointly 

estimated the probabilities of extreme total water levels arising from both extra-tropical 

and tropical storms. Not surprisingly, the studies (listed above) that have produced multi-

decadal hindcasts of water levels have all been undertaken for regions without tropical 

cyclone influence. Therefore, the overall aim of this current study was to provide a 

coherent and up to date estimate of present day extreme total water level AEP around the 

whole coastline of Australia, arising from combinations of mean sea level, astronomical 

tide and storm surges generated by both extra-tropical and tropical storms.  

 

The study was undertaken in two main stages. In the first stage, described in Section 3, a 

hydrodynamic model has been configured (Section 3.1) and used to generate a 61-year 

time-series of historic water levels around Australia. This predicted dataset has been 

validated against measurements from tide gauge sites around Australia with long records 

(Section 3.2) and then used to estimate exceedance probabilities around the entire coastline 

(Section 3.3). The second stage of the study, described in Section 4, is aimed at more 

accurately including tropical cyclone-induced surges in the estimation of extreme total 

water level probabilities. First, an analysis of tide gauge records has been undertaken in 

order to briefly assess the characteristics of tropical cyclone-induced surges around 

Australia (Section 4.1). Selected events have been modelled and validated against 

measurements (Section 4.2). A statistical model of the tracks and central pressures of 

tropical cyclones has been developed and used to generate synthetic events that represent 

the equivalent of 10,000 years of tropical cyclone activity with characteristics based on the 

topical cyclones observed over the last about 40 years, for the Australian region (Section 

4.3). Wind and pressure fields derived for these synthetic events were then used to drive 

the hydrodynamic model. Annual maximum total levels for these synthetic events have 

been calculated and these have been used to estimate exceedance probabilities around the 
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coastline (Section 4.4). The exceedance probabilities calculated in stage 1 and 2 have then 

been combined to give a single estimate of current extreme water level probabilities around 

the whole coastline of Australia. Finally, conclusions and recommendations are given in 

Section 5.    
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3 Stage 1: Tides, extra-tropical surges and mean sea level 

This section describes the first stage of the study in which a hydrodynamic model has been 

configured (Section 3.1) and validated against measurements (Section 3.2) and used to 

generate a multi-decadal time-series of historic total water levels around Australia. This 

predicted dataset has then been used to estimate exceedance probabilities around the entire 

coastline (Section 3.3). 

 

3.1 Model configuration 

A depth-averaged barotropic hydrodynamic model has been configured for the entire 

Australian coastline using the Danish Hydraulic Institute’s Mike21 FM (flexible mesh) 

suite of modelling tools. The Mike21 FM modelling system is based on the numerical 

solution of the incompressible Reynolds averaged Navier-Stokes equations invoking the 

assumptions of Boussinesq and hydrostatic pressure. The spatial discretization of the 

primitive equations, over the flexible mesh, is performed using a cell-centred finite volume 

method (see DHI, 2010).  

 

The model grid that was configured is shown in Figure 2. It has a resolution of between 

about 1/3
rd

 and 1/5
th

 of a degree (~ 20 and 80 km) at the open tidal boundaries, increasing 

to 1/12
th

 of a degree (~10 km) along the entire coastline of mainland Australia, Tasmania 

and surrounding Islands. The grid was configured using the National Oceanic and 

Atmospheric Administration’s (NOAA) medium resolution (1:70,000) coastline (obtained 

from http://www.ngdc.noaa.gov/mgg_coastline/). The bathymetric data, interpolated onto 

the model grid, was obtained from the Geoscience Australia 9 arc second (~250 m) dataset 

(Webster and Petkovic, 2005). The minimum model depth was set to -4 m.  

 

In order to generate the astronomical tidal component of sea levels, the open model 

boundaries were driven with tidal levels derived from TPXO7.2 global ocean model 

(Egbert et al. 1994; Egbert and Erofeeva, 2002). TPXO7.2 is based on OTIS (Oregon State 

University Tidal Inversion Software) and incorporates data from the TOPEX/Poseidon and 

Jason altimetry missions. The tides are provided for eight primary (M2, S2, N2, K2, K1, O1, 

P1, Q1), two long period (Mf, Mm) and three non-linear (M4, MS4, MN4) harmonic 

constituents, on a 1/4
th

 of a degree resolution full global grid. The harmonic constituents 

http://www.ngdc.noaa.gov/mgg_coastline/
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for the global grid were downloaded from the OTIS web site 

(http://volkov.oce.orst.edu/tides/). The harmonic constituents were extracted from this 

database and the astronomical tide was predicted, for each boundary grid point, using the 

Tidal Model Driver (TMD) MATLAB toolbox, created by scientists at Earth Space 

Research (http://polaris.esr.org/ptm_index.html). TMD includes standard satellite 

modulation corrections based on equilibrium tide expectations and hence the 4.4-year 

cycle of lunar perigean influence and the 18.6-year lunar nodal cycle (see Haigh et al., 

2011b) are accounted for in the predictions. TMD also incorporates 16 other minor 

constituents, inferred using the eight major constituents.  

 

In many numerical studies of coastal regions, tidal forcing is primarily provided through 

the open boundary tidal forcing (i.e. similar to that described in the paragraph above). This 

generally neglects the tide generated specifically in a basin or on a shelf sea by direct 

gravitational tidal forcing and motion of the solid Earth. Direct gravitational forced tides 

are the result of the gravitational forces of the Moon and Sun on the water in a particular 

shelf sea itself, whereas co-oscillating tides represent tides which propagate in and out of 

the shelf sea from the adjacent ocean through the open boundaries. Incorporating direct 

gravitational tidal forcing terms into the model equations of motion allows the model to 

capture both the tide generated specifically in the basin or shelf sea and the free tidal 

response. We accounted for direct gravitation forcing in the model simulations by 

including the ‘tidal potential’ forcing incorporated into Mike21. We found that this 

significantly improved prediction of the astronomical tide, particularly in Bass Strait, a 

region in which several authors have found it difficult to accurately model tides in the past 

(i.e. McIntosh and Bennett, 1984; Fandry et al., 1985; McInnes and Hubbert, 2003). A 

detailed description of direct gravitation forcing and the effect of including this in the 

hydrodynamic model simulations around Australia, in particular in Bass Strait, are given in 

Wijeratne et al. (in review). 

 

To generate the storm surge component of water levels, the model has been forced with 

mean sea level pressure fields and u and v components of 10 m wind fields, obtained from 

the US National Center for Environmental Prediction’s/National Center for Atmospheric 

Research’s (NCEP/NCAR) global reanalysis (Kalnay et al., 1996; Kistler et al., 2001). 

These meteorological fields are available every 6 hours from 1948 to present and have a 

http://volkov.oce.orst.edu/tides/
http://polaris.esr.org/ptm_index.html
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horizontal resolution of 2.5
o
. The data was downloaded directly from the reanalysis web 

page (http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml). The NCEP/NCAR mean 

sea level pressure fields and wind vectors every 12-hours between 15 and 20 May 2003 are 

shown in Figure 3. This extra-tropical storm generated a large storm surge along much of 

the coastline of southern Australia and resulted in the highest recorded total water levels at 

Fremantle since 1897. The spatial and temporal resolution of the NCEP/NCAR forcing is 

adequate for predicting storm surges associated with large extra-tropical storms such as 

these, but is too coarse to accurately predict the more intense and localised tropical 

cyclone-induced storm surge events.   

 

The tide-surge model was run for the 61-year period from 1949 to 2009. Each year was run 

separately with a five day warm up period included. Results were outputted for each model 

grid cell every hour. By running the model with both tides and meteorological forcing, 

non-linear interactions between the tide and surge components are included (Horsburgh 

and Wilson, 2007). The key parameterisations used in our Mike21 model are listed in 

Table 1. 

 

3.2 Model validation 

The model has been validated, in several stages, against measurements from the 30 tide-

gauge sites shown in Figure 1, which with the exception of Milner Bay all have at least 30 

years of records (Table 2). Milner Bay was included so that there was a validation site in 

the Gulf of Carpentaria. The tide-gauge records were obtained from the Australian 

National Tidal Centre (NTC). The records were converted into the same format and 

referenced in universal time + 0 h and Australian Height Datum (AHD). Where higher 

frequency data was available these have been sub-sampled to hourly values. The data has 

been rigorously checked for common errors such as data spikes and spurious values have 

been excluded. At each site, annual values of mean sea level were calculated for years 

where the records were at least 75% complete. A trend was then fitted to these mean sea 

level time-series using linear regression and this was used to de-trend the hourly 

measurements relative to a base year, in this case 2010.  

 

http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml
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Sixty-one year long time-series of predicted water levels were extracted from the 

hydrodynamic model results at the grid points closest to the corresponding tide gauges. 

The de-trended water level measurements and predicted model time-series at each site 

were then separated into seasonal and inter-annual mean sea level, tidal and surge 

components (Pugh, 1987). Each of these three components were validated separately, 

before a comparison of the measured and predicted total water levels was undertaken.  

 

A consistent method was used to separate both the de-trended measured and predicted 

water level time-series into the three component parts. The mean sea level component was 

derived using a 30-day running mean of the hourly time-series. The tidal component was 

estimated using the Matlab T-Tide harmonic analysis software (Pawlowicz et al., 2002). A 

separate tidal analysis was undertaken for each calendar year with the standard set of 67 

tidal constituents. The surge component was then calculated by subtracting the mean sea 

level and tidal component from the total water level time-series.  

 

A range of different methods were used to assess the performance of the hydrodynamic 

model in reproducing these three separate water level components and the combined total 

levels at each of the 30 validation sites. To determine how accurately the model predicts 

the astronomical tidal component, the amplitude and phase of the eight main tidal 

constituents, extracted from both the measured and predicted water levels using the T-Tide 

package, were compared. In addition, three error measures were used to quantify the model 

skill for the hourly tides, surges, mean sea level and total water levels. For each of the four 

time-series, the absolute difference between each hourly measured and predicted value was 

computed. The mean (i.e. equivalent to root mean square error (RMSE)) and standard 

deviation of the absolute hourly differences were then calculated, for each year and the 

total 61-year time-series. Correlation coefficients between the measured and predicted 

hourly time-series were also derived for each year and the complete time-series. In the 

following four sub-sections, the differences between the measured and predicted tide, 

surge and mean sea level components are described and then the total levels are considered, 

respectively.  
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3.2.1 Tidal component 

A comparison of the amplitude and phase of the eight main tidal constituents, estimated 

from the measured and predicted datasets, at each of the validation sites are shown in 

Figure 4 and Figure 5, respectively for the year 1995. We focus on the year 1995, because 

the measured records for this year were at least 90% complete at all tide gauge sites. There 

is relatively good agreement for each of the tidal constituents. The mean absolute 

difference between the amplitude and phase of each of the eight tidal constituents across 

the 30 sites are listed in Table 3. The mean amplitude differences are less than 11 cm and 

the mean phase differences are less than 12 degrees. For comparison, the amplitude and 

phase of the measured tidal constituents were compared to the amplitude and phase of the 

constituents from the TPXO7.2 global ocean tidal model, which are used to force the open 

boundaries of the model. These are also listed in Table 3. As expected, the higher 

resolution Australian model does a much better job of predicting tidal characteristics 

around the coast compared to the lower resolution global model.  

 

The three error measures used to quantify the difference between the measured and 

predicted hourly tidal time-series are listed in Table 4, for 1995. The largest RMSE is at 

MacKay (0.45 m) and the smallest are at Geraldton, Albany and Esperance (0.04 m). The 

average (across all the validation sites) mean and standard deviation errors were 0.14 and 

0.10 m, respectively. The mean correlation coefficient was 0.94. The errors for the 

complete 61-year time-series (not shown) were of similar magnitude. Overall, these results 

demonstrated that the model reproduces the observed characteristics of tides around the 

Australian coastline.  

 

3.2.2 Storm surge component 

A comparison of the measured and predicted surge component for 1995, at selected sites 

around southern Australia are shown in Figure 6. It can be seen that the model accurately 

captures the characteristics of surges throughout the year around southern Australia, a 

region dominated by extra-tropical storm events. The model tends to slightly underestimate 

the peak of the large storm surge events. This is probably because of the relatively coarse 

temporal (6 hourly) and spatial (2.5º) scale of the meteorological forcing.  
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The three error measures used to quantify the difference between the measured and 

predicted surge time series, for 1995 are listed in Table 4. The average (across the 30 

validation sites) mean and standard deviation errors are 0.05 m and 0.04 m, respectively. 

The average correlation coefficient is 0.75. For just the southern sites, the correlation 

coefficients are relatively high (>0.8). However, the correlation coefficients are lower for 

the northern regions, which experience tropical storms. This is not surprising, considering 

that the relatively coarse meteorological forcing used only weakly includes the effects of 

tropical storms and cyclones.  

 

The measured and predicted storm surge component for the 5-year period from 1995 to 

1999 at Thevenard (South Australia) are shown in Figure 7. This demonstrates how well 

the model reproduces the surge characteristics over a longer time scale, but how does the 

model perform over multi-decadal periods? Time-series of the three annual error measures 

are shown in Figure 8 for the storm surge component at Fremantle over the 61-year 

hindcast period. The other sites show similar findings. Interestingly, the performance of the 

model improves slightly with time, although the overall improvement is relatively small. 

There is an increase in performance from 1949 to about 1970 and then a small increase 

from around 1970 to about the start of 1980. Between about 1980 and 2009 the model 

accuracy is fairly consistent. This improvement in recent decades is not evident in the tidal 

time series, indicating that it arises from the meteorological forcing and not the quality of 

the tide-gauge measurements. This suggests there could be small inhomogeneities in the 

NCEP/NCAR meteorological fields used to drive the model. Reanalysis are prone to 

inhomogeneities due to changes in the observing system (Kristler et al., 2001). With the 

introduction of satellites, the amount of observations has increased enormously in recent 

decades. Sterl (2004) compared the European Centre for Medium-Range Weather 

Forecasts’ (ECMWF) so called ERA-40 dataset (Uppala et al, 2005) with the 

NCEP/NCAR reanalysis and found several inhomogeneities in the Southern Hemisphere 

before 1980. The density of observational data was sufficient to constrain the reanalysis 

models in the North Hemisphere but not in the Southern Hemisphere. While the increase in 

model performance over time is of scientific interest, the improvement is relatively small 

and hence unlikely to significantly influence the estimation of current extreme total water 

level exceedance probabilities.  
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3.2.3 Mean sea level component 

As previously mentioned, extreme water levels arise as a combination of three main 

factors: mean sea level, astronomical tide and storm surge (Pugh, 1987, 2004). The latter 

two have been discussed above, now we focus on mean sea level. In many parts of the 

world, including the areas for which the previous multi-decadal hindcasts were produced 

(i.e. North Sea (Langenberg et al., 1999; Weisse and Plüβ, 2006); North Atlantic (Bernier 

and Thompson, 2006); the Atlantic coast of Europe (Sebastiao et al., 2008); the British 

Isles (McMillan et al., 2011); and in Australia, Victoria (McInnes et al., 2009, 2011a) and 

Tasmania (McInnes et al., 2011b)), seasonal and inter-annual variations in mean sea level 

are relatively small, and so it is the combination of surge and tide that dominates the 

generation of extreme total water level events, hence the term ‘storm tide’. However, 

around parts of the Australian coastline, the seasonal and inter-annual mean sea level 

variations are relatively large and can strongly influence the timing and magnitude of 

extreme events, particularly in areas such as the Gulf of Carpentaria, where the seasonal 

cycle is very large, or in southwest Australia where the tidal range is relatively small in 

comparison (Pattiaratchi et al., in prep). Eliot (2012) recently showed how both seasonal 

and inter-annual mean sea level variations strongly influence extreme water levels and 

coastal flooding at Fremantle, Western Australia. Therefore, for parts of the Australian 

coastline, it is particularly important that we accurately model variations in mean sea level 

in order to correctly capture the observed characteristics of total water levels around the 

coast.  

 

Seasonal and inter-annual variations in mean sea level arise from both batotropic and 

baroclinic effects. Depth averaged hydrodynamic models only reproduce the barotropic, 

and not baroclinic variations in mean sea level. Most of the previous studies that have 

generated multi-decadal hindcasts, used depth averaged models. This was appropriate 

because both the barotropic and the baroclinic variations in mean sea level were relatively 

small in the areas assessed and did not have a marked effect on total water levels. The 

alternative is to run full three-dimensional baroclinic models, but this is generally avoided 

because they are considerably more computationally expensive to run. From our 

perspective, it was desirous not to have to run a baroclinic model given the relatively large 

domain being modelled. Therefore, we conducted a detailed analysis of mean sea level 

variation around Australia using tide gauge and altimetry records. We examined the 
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relative barotropic and baroclinic contributions and determined how well the model 

reproduces the barotropic component. The estimated baroclinic signal was compared with 

steric heights derived from temperature and salinity climatology obtained from the World 

Ocean Atlas (WOA-09). This is described in detail in Wijeratne et al. (in prep) and 

summarized briefly here.  

 

Monthly mean tide gauge and satellite altimetry records were obtained from the websites 

of the Permanent Service for Mean Sea Level (PSMSL) (http://www.psmsl.org/) and the 

Archiving, Validation, and Interpretation of Satellite Oceanographic Data (AVISO) 

(http://www.aviso.oceanobs.com/), respectively. A simple approach was used to 

decompose the monthly sea level records into seasonal and inter-annual components at 

each site. First the monthly sea level records were de-trended using linear regression. Then 

a 12-month running mean was applied to generate the inter-annual component. The inter-

annual component was then subtracted from the de-trended monthly sea level records to 

generate the seasonal component.  

 

The mean range in the seasonal component around Australia is shown in Figure 9a. In the 

Gulf of Carpentaria, the seasonal cycle in mean sea level has a range of up to about 1 m, 

which is one of the biggest seasonal variations in mean sea level in the world. The average 

month during which the seasonal cycle is largest is shown in Figure 9b. Hypothetically, 

for a storm to generate a given total water level in the Gulf of Carpentaria, the associated 

surge would have to be 1 m higher in June to generate the same total water level in January. 

In southwestern Australia the range of the seasonal mean sea level cycle is large (~0.3 m) 

compared to the relatively small mean tidal range in the region (~0.4 m).  

 

The inter-annual component (results not shown) has a maximum range of up to 0.3 m 

around northern and western Australia and is much smaller (>0.1 m) around southern and 

eastern Australia. Around northern, western and southern Australia the inter-annual 

variability is highly correlated with the Southern Oscillation Index (SOI), a descriptor of 

the El Niño-Southern Oscillation (ENSO) and a large part of the variability is coherent 

between sites (see Haigh et al., 2011c). Along this part of the coast, years with low annual 

mean sea level values (i.e. 1997/98) are associated with El Niño episodes and hence 

http://www.psmsl.org/
http://www.aviso.oceanobs.com/
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sustained negative values of the SOI, whereas years with high annual mean sea level 

values (i.e. 1999/2000) are associated with La Niña events and hence positive SOI values.  

 

Having established the general characteristics of the seasonal and inter-annual variations in 

mean sea level around the coast, we then attempted to determine the relative barotropic and 

baroclinic contributions around Australia. For the 10-year period from 2000 to 2010, we 

derived monthly mean values from the model hindcast (i.e. the barotropic component) over 

the whole model domain and subtracted this from monthly mean values from the altimetry 

data, to estimate the baroclinic signal. In areas where the mean sea level variability is large, 

we found that the barotropic component accounted for a large part of the overall signal and 

was generally well reproduced by the model. The barotropic signal in the Gulf of 

Carpentaria accounts for more than 80% of the large variability in this region. However, to 

accurately model this variability, which arises as a result of monsoonal wind setup, we had 

to extend the model domain to cover the Java, Banda and Arafura Seas around Indonesia. 

Where the mean sea level variability was smaller, the baroclinic component accounted for 

more of the variability, and hence our model underestimated the variability in these regions. 

However, because the overall mean sea level variability is smaller in these regions, it has 

less influence on the total water levels.  

 

Finally, at each of the 30 study sites we compared the observed mean sea level component 

(derived using a 30-day running mean of the de-trended hourly time-series; see Section 3.2 

above) with the predicted barotropic component (derived in the same way). At each site the 

model underestimated mean sea level, because the model does not predict the baroclinic 

component. However, overall the differences were still relatively small, because the 

baratropic component is generally a large component of the overall variability where the 

mean sea level variability is large. The three performance measures at each of the 

validation sites for 1995 are listed in Table 4. The average (across all the validation sites) 

mean and standard deviation errors are 0.07 m and 0.04 m, respectively. The average 

correlation coefficient is 0.78. The errors for the complete 61-year time-series (not shown) 

are of similar magnitude. 
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3.2.4 Total water levels 

It is clear from the above three sections that the predicted tide, surge and mean sea level 

components accurately reproduce the measured tide, surge and mean sea level variations at 

the 30 validation sites. Hence, it is reasonable to assume that the combined predicted tide, 

surge and mean sea level components will accurately reproduce the de-trended measured 

total water levels. A comparison of measured and predicted total water level frequency and 

cumulative frequency distribution curves are shown in Figure 10 for four selected sites 

(Albany, Port Lincoln, Burnie and Newcastle). There is good agreement at each of these 

sites and the other 26 validation sites not shown. The three performance measures are 

listed in Table 4 for the total water levels at each of the validation sites for 1995. The 

average (across all the validation sites) mean and standard deviation errors are 0.18 m and 

0.12 m, respectively. The average correlation coefficient is 0.92.  

 

Overall, the model does a very good job in accurately reproducing total water levels and its 

component parts. The differences between the measured and predicted time series are of a 

similar magnitude, or lower on average to that reported in similar studies undertaken for 

different areas of the world and parts of Australia. 

 

3.3 Water level exceedance probabilities 

In this section the AEP estimated from the de-trended measured total water levels (with the 

datum adjusted so that the levels related to the middle of the base year 2010) and the 

predicted total water levels are compared at the 30 validation sites. Following that, the 

procedure used to estimate the AEP at all of the coastal model grid points is described.  

 

Over the last 50 years, several different methods have been developed and refined for 

estimating probabilities of extreme water level, but there is currently no universally 

accepted method (Haigh et al., 2010). In this paper, we perform extremal analyses using 

the classic annual maxima method (AMM), fitted to both Gumbel (GUM) and Generalized 

Extreme Value (GEV) distributions, and compare estimates to those obtained using the 

related r-largest method (RLM). An overview of these statistical methods is given in Haigh 

et al. (2010) and the literature referenced within can be consulted for the mathematical 

detail. These two methods, along with the peaks over threshold Method (POT), are called 
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direct methods as they analyze the extremes of the observed water level (we choose not to 

use the POT method because a separate threshold must be selected for each site and 

threshold selection is somewhat subjective due to considerable temporal and spatial water 

level variability; whereas, both the AMM and RLM are robust to temporal and spatial 

variations as they rely upon a relative definition of what constitutes an extreme event 

(Butler et al., 2007)). There are two main objections to using the traditional relatively 

simple direct extreme analysis methods. First, water level is made up of a complex 

combination of tide-driven (deterministic) and mean and storm-driven (stochastic) 

components that have strong seasonal patterns. Hence, the naive assumptions leading to 

the GUM or GEV family for block maxima are somewhat unrealistic. Second, the direct 

methods, particularly the AMM, are inefficient in their use of data. More sophisticated 

indirect (i.e. the astronomical tidal and non-tidal components are modelled separately and 

the extremes of sea level are inferred) extreme analysis methods, such as the joint 

probability method (JPM) (Pugh and Vassie, 1979, 1980) and the revised joint probability 

method (RJPM) (Tawn and Vassie, 1989) have been developed to address these limitations 

(see Haigh et al., 2010). However, we did not consider these two methods as they are very 

sensitive to timing errors (see Pugh, 1987 p. 53-58), which are particularly prevalent in 

early parts of many of the tide-gauge records around Australia. Correcting for this is a 

particularly arduous and time-consuming exercise and beyond the scope of the study. 

Recently the state-of-the art skew surge joint probability method (SSJPM) was introduced 

by McMillan et al. (2011). This new technique builds on the JPM and RJPM method and 

has the considerable advantage over the other two indirect methods that it is relatively 

robust to timing errors and does not require non-linear interactions between the surge and 

tide to be accounted for. In the future we hope to update the estimates presented below 

using this new more sophisticated method, but in the meantime focus on the AMM and 

RLM.  

 

The extremal analyses were undertaken using the ismev package (Coles, 2001) 

implemented in the statistical language R (http://www.r-project.org/). This computes the 

maximum likelihood estimation of the exceedance distribution and its upper and lower 

95% confidence limits. Annual maxima and the several largest levels each year were 

derived, in both the measured and predicted datasets, using a clustering algorithm. Each 

level was required to be separated by at least 72 hours, to ensure distinct extreme events 

http://www.r-project.org/


Technical Report  Estimating present day extreme water level 

exceedance probabilities around the coastline of Australia 

 

25 

were identified. AEP were then estimated using the annual maxima time-series fitted to (i) 

a GEV distribution; (ii) a GUM distribution, and (iii) the r-largest time-series fitted to a 

GEV distribution. In regards to the latter, sensitivity tests were undertaken using r-values 

ranging from two to 15, with five largest values per year found to give a stable estimate.  

 

First we compare the measured and predicted AEP estimated using the AMM fitted to a 

GEV distribution. The return period curves for the base year 2010, derived from both the 

measured and predicted time-series, are shown in Figure 11 for the validation sites. The 

predicted levels have been artificially adjusted so that the 1-year return period levels 

exactly match those of the measured estimates at each site. This was done because the 

predicted water levels are relative to MSL, whereas the measured levels are relative to 

AHD. Around mainland Australia, AHD was defined using MSL records between 1966 

and 1968 at 30 sites around the coast of the Australia and hence differs from present day 

MSL. Around Tasmania, AHD was defined using two records from 1972. The agreement 

between the measured and predicted AEP is reasonable at most sites. In general, the 

predicted curves under estimate the return levels, at higher return periods, for the sites that 

are strongly influenced by tropical cyclones (i.e. Mackay around to Carnarvon), 

particularly Port Hedland. The measured and predicted 10-, 50- and 100-year return levels 

are listed in Table 5. The absolute difference between the measured and predicted return 

levels is also listed for each site. The average difference across the 30 validation sites for 

the 10-, 50- and 100-year return levels is 0.06 m, 0.1 m and 0.15 m, respectively. Similar 

magnitudes of differences were obtained for the estimates obtained using annual maxima 

time-series fitted to a GUM distribution and the r-largest (r=5) time-series fitted to a GEV 

distribution. 

 

It is interesting now to briefly compare estimates obtained from the three different 

approaches we used to estimate AEP. Return period curves calculated using the three 

approaches are shown in Figure 12 for the measured data at Geraldton and Fort Denision. 

The majority of the other validation sites showed similar characteristics. At the lower 

return periods (<~20 years) the three estimates agree well. However, at the long return 

periods (~>20 years) the AMM and RLM fitted to GEV distributions tend to flatten off 

more rapidly than the estimates from the AMM fitted to GUM distributions. As a result the 

difference between the 100- and 1,000-year return level is relatively small (typically <0.1 
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m) at most sites. The performance of the three estimates can be assessed, using a simple 

approach suggested by Dixon and Tawn (1999), by comparing the difference between the 

estimated return periods of the observed maximum water level at each site with the 

corresponding data length. At both locations shown in Figure 12, the respective maximum 

recorded water level has been plotted against the length of the respective record (i.e. 45 

and 96 years) and this is shown as a green square. For both Geraldton and Fort Denison it 

can be seen to agree closely with the estimate calculated using the AMM fitted to the 

GUM distribution. At almost all sites (results not shown), the AMM fitted to the GUM 

distribution has the lowest so called ‘prediction errors’. This indicates that the AMM and 

RLM fitted to GEV distributions tend to underestimate the return levels (or overestimate 

the return periods) at high return periods. Based on these results, we focus here onwards on 

the estimates derived using the AMM fitted to a GUM distribution. This also has the added 

advantage that the estimates are more conservative. 

 

Dixon and Tawn (1999) and Haigh et al. (2010) compared different direct and indirect 

methods using tide gauge records around the UK and also showed that the direct methods, 

fitted to GEV distributions, tend to underestimate return levels for return periods of 20 

years or more at UK sites where the surge variation is small in comparison with the 

variation in astronomical tidal levels. Dixon and Tawn (1999) suggested that the reason the 

direct methods tend to underestimate the long period return levels is most likely due the 

key assumption in the AMM and RLM, that the maximum or r-largest values over a year 

behaves like a maximum of a stationary process. The sequence of water level would be 

approximately stationary and the assumption correct, if the tidal variations and seasonality 

were negligible compared with the surge variability. However, if the variability of the 

surge component is negligible relative to that of the tide, then because of the deterministic 

nature of the tide, the maximum level over an 18.6-year nodal cycle will be approximately 

a degenerate random variable equal to the highest astronomical tide. When this is the case, 

the extrapolation to long return periods will be poor when using the direct methods. As 

Haigh et al. (2010) point out, the differences between the indirect methods and direct 

methods are small for return periods less than 18 years, confirming this point. Without 

undertaking a more detailed comparison of different methods, it is difficult to say with 

certainty whether this holds true for Australia, but most likely this is the case. We think 

therefore, that it would be beneficial to conduct a much more detail comparison in the 
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future, similar to that undertaken for UK sites by Haigh et al. (2010), of the different 

extreme value methods around Australia, including the SSJPM that has recently become 

available, to better understand observed differences.  

 

In order to estimate AEP around the entire coastline of Australia, 61-year annual maxima 

time-series were derived for the 2,440 model grid points located at 1/12
th

 of a degree (~10 

km) intervals around the mainland Australian and Tasmanian coastlines. At each coastal 

point, AEP were estimated using the AMM fitted to a GUM distribution. The offset 

between the measured and predicted 1-year return level at each of the 30 validation sites 

was linearly interpolated onto all of the coastal model grid points. The interpolated value at 

each coastal grid point was then used to adjust the estimated AEP at that corresponding 

point. The AEP values were then linearly interpolated to 1/60
th

 of a degree (~2 km) 

intervals around the coast. The 100-year return water levels for each of the coastal model 

grid points is shown in Figure 13 for the base year 2010. The corresponding 100-year 

levels, estimate from the tide-gauge records, are also shown on Figure 13 as circles.  

 

It is important to emphasis that whilst the results shown in Figure 13 provide a reliable 

estimate of current total water level recurrence intervals around southern Australia, which 

is mainly impacted by extra-tropical storms, the resultant water level recurrence intervals 

are underestimated at this stage around western, northern and north-eastern Australia at 

higher return periods. This is because the meteorological fields used to force the 

hydrodynamic model only weakly include the effects of tropical cyclones, but, even if the 

resolution of the meteorological forcing was adequate to represent tropical cyclone-

induced surges, multi-decadal periods yield insufficient instances of tropical cyclones to 

enable the use of traditional extreme value extrapolation techniques. This brings us to stage 

2 of the study, which has been undertaken to address these issues.  
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4 Stage 2: Tropical cyclone-induced surges 

The aim of the second stage of the study, which is described in this section, is to more 

accurately include tropical cyclone-induced surges in the estimation of extreme total water 

level probabilities. Here, an analysis of tide gauge records was undertaken in order to 

assess the characteristics of tropical cyclone-induced surges around Australia (Section 4.1) 

and select events which could be simulated and validated against measurements (Section 

4.2). A stochastic tropical cyclone model was developed and used to generate a synthetic 

event set (10,000 years) statistically representative of tropical cyclone activity (1969-2008) 

in the Australian region (Section 4.3). Wind and pressure fields, derived for these synthetic 

events, were used to drive the hydrodynamic model. Annual maximum total levels for 

these synthetic events were calculated and used to estimate exceedance probabilities 

around the coastline (Section 4.4). The exceedance probabilities calculated in stages 1 and 

2 were then combined to provide a single estimate of the current extreme water level 

probabilities around the whole coastline of Australia. 

 

4.1 Analysis of tide-gauge observations 

As a first step, an analysis of tide gauge records has been undertaken in order to: (i) briefly 

assess the characteristics of tropical cyclone-induced surges around Australia; and (ii) 

select events suitable for validating the hydrodynamic model for tropical cyclones. The 

analysis focused on the storm surge component of the tide gauge records at the 30 

validation sites (Figure 1). For each site, the 100 largest storm surge events between 1970 

and 2008 were identified from the derived surge component. Each storm surge event was 

required to be separated from the subsequent event by at least 72 hours to ensure distinct 

storm events were identified, rather than double counting of the same event. The dates of 

these events were then compared to the dates and tracks of cyclones obtained from the 

Australian Bureau of Meteorology’s (BOM) tropical cyclone database (downloaded from 

the following web site: http://www.bom.gov.au/cyclone/history/index.shtml). Although 

BOM’s database extends back to 1907, we focused on the post 1969 ‘satellite era’. Our 

analysis was restricted up until 2008, because the database only contained cyclone 

information up until this year at the time of analysis. Of the 30 tide gauge sites, only 

Milner Bay and Brisbane didn’t have records spanning the complete 1970 to 2008 period; 

the Milner Bay record started in 1993 and the Brisbane record in 1977.  

http://www.bom.gov.au/cyclone/history/index.shtml
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Seventeen of the 30 tide gauge records were found to have tropical cyclone-induced surge 

events within the 100 highest surge events recorded at each site between 1970 and 2008. 

The tracks of the tropical cyclones responsible for the ten largest cyclone-induced surge 

events that made it into the top 100 largest surge events identified at each site, are shown 

in Figure 14. For Esperance and Albany, only one tropical cyclone (Alby in 1978) 

generated a storm surge that was within the top 100 events identified at each site, implying 

therefore that the other 99 largest events were generated by extra-tropical or tropical (but 

not classified as cyclone) storms. In contrast, for more northern sites, an increasing number 

of tropical cyclone-induced storm surge events feature in the top 100 surge events. For 

most of the sites, shown in Figure 14, the largest cyclone-induced storm surges were 

generated by cyclones tracking to the left of the site. This is expected given that onshore 

winds are generated to the right of the cyclone along the Northern Australia coastline.  

 

The largest tropical cyclone-induced surges at each of the 17 sites, in order of storm surge 

height, are listed in Table 6. The largest recorded surge, over the period 1970 to 2008 at 

the tide gauges analysed, was 2.84 m at Townsville, resulting from tropical cyclone Althea 

in 1971. This event also resulted in the highest total water levels recorded at this location 

over the analysis period (2.53 m), despite the fact that the peak of the surge occurred 

around the time of low water (tidal height was -0.31 m). The second largest recorded surge 

was 2.26 m at Broome, resulting from tropical cyclone Rosita in 2000. This event only 

generated the 45
th

 highest recorded total water levels at Broome. The peak of the event 

occurred only two hours after high water, but because the tidal range is very large at this 

site (~10 m), it did not generate a particularly extreme total water level.  

 

4.2 Model validation and sensitivity tests 

4.2.1 Event selection 

The next stage involved a validation exercise to determine the accuracy of tropical 

cyclone-induced storm surge events that could be simulated using the 2D hydrodynamic 

model. Based on the tide-gauge analysis described above, and in particular the large events 

listed in Table 6, we selected nine events to validate the model, ensuring that these 

covered different regions of the cyclone affected part of the Australian coastline. These 
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chosen events are listed in Table 7. In addition, we considered Cyclone Yasi, a category 5 

system which occurred recently in February 2011. During this event a maximum storm 

surge of 5.5 m was recorded at the Cardwell tide gauge, located midway between Cairns 

and Townsville. Water level measurements were obtained for this period for the Cairns and 

Townsville tide gauges and three additional gauges located along that stretch of coastline.  

 

4.2.2 Wind field model description and validation 

For each of the selected events, gradient level wind and pressure fields, necessary to force 

the hydrodynamic model, were derived using the analytical double vortex model proposed 

by Cardone et al (1994). As in McConochie et al. (1999), a secondary vortex was included 

to flatten the decay profile moving away from the storm, not to generate a distinctive 

second peak. This model overcomes the observed limitation of an overly rapid decay with 

the standard Holland (1980) model and affords better agreement with observed wind 

records at large radii (McConochie et al. 1999). We implemented the wind speed 

dependent surface reduction (notionally to an elevation of 10 m), inflow angle and 

asymmetry regimes outlined in McConcochie et al. (2004), which are based on Harper 

(2001). The only variation to these models was the random selection of the location of 

maximum wind speed, chosen to reside between 20° and 135° anti-clockwise from the 

direction of storm motion, in line with surface wind observations presented in Uhlhorn et 

al. (2007). No synoptic winds were included. 

 

The basic wind field model has previously undergone validation for Coral Sea and, 

notionally, Indian Ocean tropical cyclones (McConochie et al. 2004), but is again validated 

for the current implementation. The BOM tropical cyclone database does not record all 

required model parameters (i.e. radius to maximum winds (primary and secondary vortex), 

location of maximum winds and Holland B parameters). Therefore, these were estimated 

for a number of historic events by randomly sampling possible variable combinations and 

minimising simulation least-squares error in wind speed, direction and surface pressure, 

where these data were available, along with some visual refinement to arrive at optimal 

event parameters. Using these values, predicted wind speed and surface pressure time 

histories were extracted for each event. Model performance is exemplified in Figure 15 

which compares predicted wind, direction and surface pressure results with those recorded 

during the passage of tropical cyclone Yasi in 2011 at several locations. Localised 
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adjustment factors were used to transform the predicted wind speed to an equivalent 10-

minute mean with the surface characteristics of the site. The relative error seen in this 

figure is representative of that found for other predicted events. 

 

For inputting wind and pressure fields to the hydrodynamic model, a 0.1° rectilinear grid 

was built throughout the domain. For the 100 km zone buffering land, the grid was refined 

to 0.05° to better resolve the flow in the near-shore region. For grid points within 20 km of 

land, an additional wind speed adjustment was applied to account for the increased surface 

roughness in the coastal zone. Variable factors for on- and off-shore winds as well as near- 

(<10 km) and deep-coastal (10-20 km) regions were applied based on generic surface 

roughness transition arguments (Simiu and Scanlan 1986; Harper et al. 2009). Assumed 

surface roughness values in the four regions were: on-shore deep-coastal z0 = 0.01 m; on-

shore near-coastal z0 = 0.015 m; off-shore deep-coastal z0 = 0.02 m; off-shore near-coastal 

z0 = 0.07 m. All fields were parsed at a temporal resolution of 1 hour. 

 

4.2.3 Storm surge validation 

The validated gradient wind and pressure fields for each event were then used to force the 

same hydrodynamic model described in Section 3.1 (i.e. using the full grid shown in 

Figure 2) and the results were compared to water level measurements. Rather than 

presenting results for all 10 events, we focus briefly on the three largest events, namely 

tropical cyclones Althea and Rosita, which generated the largest two recorded surges 

between 1970 and 2005 at the sites analysed (Section 4.1), and Yasi. The tracks of these 

three cyclones are shown in Figure 16. 

 

As non-linear interactions between the tide and surge are shown to be important along 

certain stretches of the Australian coastline (see Section 4.2.4 below), tidal forcing was 

included at the open boundary using levels derived from the TPXO7.2 global ocean model 

(see Section 3.1). For each event, a tide only run was also undertaken. The results from this 

were subtracted from the tide plus surge run to obtain the predicted storm surge component.  

 

Comparisons between the measured and predicted storm surge at Townsville, for cyclone 

Althea, and Broome, for cyclone Rosita, are shown in Figure 17. Generally, the 

hydrodynamic model reproduces the storm surge profile at each site. The model predicts 
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the maximum surge at Townsville for cyclone Althea to within 5 cm and the maximum 

surge at Broome for cyclone Rosita to within 1 cm. Comparisons between the measured 

and predicted storm surge are shown in Figure 18 for cyclone Yasi, across four tide 

gauges in Queensland. Again, the model reproduces the observed storm surge at each site 

and predicts the maximum storm surge at the Cardwell tide gauge to within 8 cm, but with 

less accuracy at the other three sites.  

 

4.2.4 Sensitivity testing 

Tests were then carried out to examine the sensitivity of the simulated surge to tidal state. 

In many parts of the world, non-linear interactions occur between the tide and surge 

components of water level. This process, known as tide-surge interaction, has been most 

studied in the southern North Sea where it tends to result in surge maxima occurring on the 

rising tide, which significantly influences extreme total water levels (see Horsburgh and 

Wilson, 2007, and references within). In other parts of the world, tide-surge interactions 

are generally strongest over broad and shallow continental shelves, where the retarding 

effect of bottom friction more effectively influences the currents induced by tides and 

surges (McInnes et al., 2011a).  

 

Generally, in modelling studies the preferred and most efficient approach is to model the 

storm surges separately from the tide and statistically combine the two to evaluate extreme 

total water levels (Harper et al., 2001). However, where tide-surge interactions are strong, 

the total water level heights obtained from the combined tide and storm surge does not 

equal the height of the tide and surge simulations separately, and subsequently summed 

together (McInnes et al., 2011a). Therefore, to determine the importance of non-linear 

effects around Australia, two sets of simulations were undertaken for tropical cyclones 

Althea and Rosita. For both cyclones, an initial run was undertaken in which the model 

was driven only with meteorological forcing. Then for both cyclones, four additional runs 

were undertaken in which the model was driven with both tidal forcing and meteorological 

forcing, but the timing of the meteorological forcing was artificially adjusted so that the 

peak of the surge occurred around the time of low water, on the rising tide, high water and 

on the ebb tide.  
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Non-linear tide-surge interactions were apparent both at Townsville for cyclone Rosita 

(Figure 19) and at Broome for cyclone Althea (Figure 20), but the non-linear interactions 

were much larger at Broome where the tidal range is ~10 m, compared to Townsville 

where the tidal range is ~1 m. The predicted total water levels (i.e. tide + surge runs) for 

both Townsville and Broome are shown in Figure 19a and Figure 20a, respectively, for 

the four different tidal states. The storm surge components associated with these four 

simulations and the storm surge from the storm surge only run are shown in Figure 19b 

and Figure 20b. The same information is shown in Figure 19c and Figure 20c, but the 

timing of the storm surge curves has been readjusted for the time offset previously applied, 

so that the time-series can be compared directly. At Townsville, the differences between 

the surges for the four tidal states are small (<0.3 m) (Figure 19c). This implies that the 

surge could be predicted independently of the tide in this region, and this is the approach 

followed in many of the previous cyclone storm surge studies for Queensland (Harper et al., 

2001). However, there is more than a 1 m difference between the storm surges for the four 

different tidal states at Broome (Figure 20c), with the largest storm surge being produced 

around peak ebb and the smallest around peak flood. Not only does the maximum height of 

the event change with tidal state, but the duration and shape also varies. Therefore, it is 

clear that the surge should not be predicted independently of the tide on the North West 

Shelf of Australia. Hence, we decided to include the tide in all the simulations.  

 

4.3 Storm surge simulation of 10,000 years of synthetic tropical cyclones 

In the previous section, we demonstrated the ability of our hydrodynamic model to 

accurately simulate the storm surges associated with observed tropical cyclone events. The 

objective now is to predict storm surges associated with 10,000 years of synthetic cyclone 

events representative of current climate cyclonic activity (1969-2008), and use these long 

time-series to more accurately estimate total water level exceedance probabilities in 

tropical cyclone prone areas. 

 

4.3.1 Synthetic tropical cyclone database 

A 10,000 year synthetic tropical cyclone database was developed using tropical cyclone 

observations held by the BOM. Considering data limitations in records prior to the 

implementation of satellite tracking (Holland 1980; Harper et al. 2008), only the period 
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following its inception was used to develop baseline climatological statistics. Thus, the 

database is built upon data from the 1969/70 to 2008/09 tropical cyclone seasons and 

should only be considered representative of this period (and any variability within it). The 

tropical cyclone wind model generates and tracks synthetic activity within approximately 

600 km of the Australian coastline from 30°S (Coffs Harbour, NSW) on the east coast to 

35°S (Augusta, WA) on the west (Figure 21). In all areas the domain extends beyond the 

continental shelf. The analysis grid used for parsing data to the hydrodynamic model is 

temporally and spatially identical to that described in Section 4.2.2. 

 

Tropical cyclone genesis: Event genesis can occur either within the genesis region of the 

model domain (cross-hatched in Figure 21) or upon one of a series of approximately 200 

km gates that follow the outer domain boundary. Those events generated on a gate 

simulate cyclones that form outside the model domain but track into it during their lifetime 

(James and Mason 2005). For each of the 10,000 simulated years, a Poisson sampling 

process generates an appropriate number of events based on historically observed annual 

event frequencies at each gate or within each of the genesis domain sub-regions (9 cells in 

total). Given event occurrence at some gates is limited, averaging between gates is 

necessary in some locations. The cell genesis region extends from 22° S on the east coast 

to 20° S on the west (Figure 21), while gate events can occur anywhere along the outer 

boundary of the domain. Monte-Carlo sampling of probability distributions is used to 

assign each synthetic event an initial ambient pressure, central pressure, forward speed, 

direction and radius of maximum winds (Hardy et al. 2003). 

 

Storm tracking: Following genesis, autoregressive techniques model subsequent forward 

speed, direction and central pressure values (Vickery et al. 2000). Autoregressive constants 

were derived using multivariate regression within 14 domain sub-regions of similar storm 

behaviour. The path of each tropical cyclone is generated as a series of straight lines, each 

representing 6 hours of elapsed time (linearly interpolated to 1 hour). Whilst over the 

ocean, the central pressure is limited by the Maximum Potential Intensity at each location 

and when an event moves over land the central pressure decays using a calibrated 

exponential decay function similar to that proposed by Kaplan and DeMaria (1995).  
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Wind and pressure field models: Wind and pressure field models are for the most part 

identical to those discussed in Section 4.2.2. Primary vortex Holland B parameter values 

were sampled from a distribution about the central pressure using the B relationship set out 

in Harper and Holland (1999). The slightly different version of this relationship described 

in McConochie et al. (2004) was tested but found not to perform as well when compared 

with long term measured wind statistics. Initial primary vortex radiuses to maximum winds 

were sampled about the mean relationship with central pressure given in Hardy et al. 

(2003). 

 

For simplicity, the outer vortex characteristics were held constant with B2 = 1 and R2 = 

200 km (Hardy et al. 2003). Two additional wind field models, Kepert (2001) and 

Georgiou et al. (1983), were also tested but found not to perform as well when compared 

with the aforementioned wind statistics. In saying this, however, there were instances 

where a calibrated Kepert model performed better than the current wind field model when 

compared with individual events. The main reason for its discrepancy with long-term 

statistics appear to be linked with the arguably too rapid decay of wind speed when moving 

away from the cyclone core, given that the majority of these data were recorded at a 

reasonable distance from the storm. 

 

Validation of wind statistics: Model output has been validated against observations from 

27 automatic weather stations at a number of locations around the Australian coastline and 

at reef/island sites, all with meteorological records longer than 30 years. The predicted and 

measured wind speed return period curves are shown in Figure 22 at eight selected 

stations, the locations of which are shown in Figure 21, with all return periods estimated 

using the Gringorten modification to a standard Gumbel procedure (Holmes, 2001, p32). 

Historic wind data were determined to be tropical cyclone generated when a tropical 

cyclone tracked within 500 km of that site at the time of record. Again, for comparison 

with historic data, model output is locally adjusted to be representative of site conditions. 

Excellent agreement is seen for the majority of sites, but an over prediction of wind speeds 

is evident in the region around Broome (not shown) and Townsville. Townsville 

comparisons improve somewhat when looking at gust wind speed data. Coast crossing 

frequency and central pressure distributions have also been crosschecked and validated 

against historic coast crossing statistics.  
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The historic tropical cyclone tracks from the BOM database between 1970 and 2008 and 

an equivalent period (i.e. 39 years) from the synthetic predicted dataset, are shown in 

Figure 23a and b, respectively. Generally, the two show similar characteristics. Synthetic 

cyclone tracks for a 1,000-year period are shown in Figure 23c (and the report cover 

image). 

 

4.3.2 Hydrodynamic simulations 

For each of the synthetic tropical cyclone events (about 75,000 in total; mean of 7.5 per 

year) that represent the equivalent of 10,000 of years of cyclone activity, the profile model 

described in Section 4.2.2 was used to generate gradient wind and atmospheric pressure 

fields every hour. This was then used to force the hydrodynamic model. Each tropical 

cyclone was modelled separately. Each event was assigned a random tide. First a year was 

chosen at random, from a 19-year period between 1990 and 2009. This time period 

corresponds to a complete 18.6-year lunar nodal cycle. Once a year was chosen at random, 

a particular hour in that year was also chosen at random. However, a weighting was 

applied based on observations from the BOM dataset to account for the cyclone-surge 

season. The model was then initiated at the chosen hour and run for the duration of the 

event. Tidal forcing for this period was included. However, to avoid having to warm-up the 

model from a flat and stationary water surface, which typically requires at least a two-day 

simulation period, a simulation was run with tide forcing only for the 19-year period and 

water levels and u and v current velocities were saved every hour. For the randomly 

chosen hour, these fields were then used as initial conditions for the simulation, which then 

only required a few hours of warm up. This considerably reduced combined model run 

times. 

 

For each event, predicted total water levels (i.e. tide + surge) were output for each model 

grid cell every hour. To output just the surge component, the tidal levels predicted from the 

simulation run with tide forcing only, for the 19-year period, were subtracted from these 

results. For each event, the maximum total and surge levels over the duration of the event 

were calculated and stored.  
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4.4 Water level exceedance probabilities 

First we examine exceedance probabilities for just the surge component of the tropical 

cyclone simulations. For each year, of the 10,000-year period, the maximum surge levels 

were calculated for each of the 2,440 coastal model grid points. Annual maxima were then 

ranked in order of size and the return periods were estimated by taking 1 over the rank 

divided by the total number of years (e.g. for the second highest predicted surge level at a 

given location over the 10,000 year simulation period we get a return period of 5,000 

years; i.e. 1/(2/10,000)). A normal kernel function was used to smooth the distribution and 

give return levels at specified return periods. The 1,000-year surge level is shown in 

Figure 24b for the entire coastline. For comparison, the corresponding estimates (using the 

AMM fitted to a GUM distribution) from the first stage of the study are shown in Figure 

24a. It is interesting to see at what return periods the tropical cyclone-induced surges 

exceed the extra-tropical generated surges. This is shown in Figure 25. For the Pilbara 

coastline (around Port Hedland) the tropical cyclone generated surge return levels are 

larger than the extra-tropical generated surge return levels between the 0.1-1 year return 

period. Elsewhere along most of the northern coastline the tropical cyclone generated surge 

return levels are larger between the 1-10 year return period. Typically, as you move south 

the return period beyond which the tropical cyclones are larger increases. Along all of the 

south and southeast part of the coastline the tropical-cyclone-induced surge return levels 

do not exceed the extra-tropical generated surge level below the 10,000-year return period, 

as expected.  

 

Now we consider total water level exceedance probabilities. Each of the 75,000 cyclonic 

events were modelled separately with a random tidal state, hence the predicted levels are a 

combination of surge and tide. For each event, the maximum water level was extracted for 

each of the 2,440 coastal model grid points. However, before deriving annual maximum 

total levels and estimating recurrence intervals, it was necessary to artificially add a 

random mean sea level state to the maximum levels for each event to get a total water level 

(i.e. combined mean sea level, tide and surge). As we showed in Section 3.2.2, seasonal 

mean sea level variations, particularly in the Gulf of Carpentaria, can be very large (up to 1 

m). Each cyclone event typically lasted only a matter of days, and the model was only 

forced with the gradient level wind and pressure fields derived for that particular cyclone. 
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Hence, the seasonal and inter-annual mean sea level variability observed around Australia 

is not captured over this short period, as it is caused by longer-term (>month) synoptic 

pressure and wind changes which were not accounted for in the model. By comparison, 

these long-term mean sea level changes are reproduced reasonably well in the 61-year 

hindcast. Hence, for each of the modelled 75,000 cyclone events, a random year, within the 

61-year hindcast period from stage 1 was selected and a random hour within that year 

(weighted for cyclone season) was again chosen. The height of mean sea level component 

(for each of the 2,440 coastal grid point) at that randomly selected hour was extracted from 

the 61-year hindcast generated in stage 1 and added to the predicted (tide and surge) values. 

Following this the maximum total water levels were calculated for each of the 2,440 

coastal model grid points for each year, of the 10,000-year simulated period. Again, the 

annual maxima total levels were ranked and analysed using a probability density estimate 

based on the normal kernel function to give exceedance probabilities.  

 

The 1,000-year total level is shown in Figure 26b. For comparison, the corresponding 

estimates from the first stage of the study are shown in Figure 26a. The total predicted 

water level return period curves from stage 1 and 2 are shown in Figure 27 for the grid 

cells nearest to the 30 validation sites. Again it is interesting to consider at what return 

periods the tropical cyclone-induced total water levels exceed the extra-tropical generated 

total water levels. From Albany to Newcastle, the extreme total water levels are completely 

dominated by extra-tropical storm events. However, for the northern sites the upper return 

periods are dominated by tropical cyclones. The return periods at which the tropical 

cyclone-induced total water levels exceed the extra-tropical generated total water levels are 

shown in Figure 28 for the entire coastline. Comparing Figure 25 with Figure 28, it is 

clear that for total water levels the north to south crossover is not as uniform as for the 

storm surge levels alone. This is expected given that the tidal range varies considerably 

around Australia. An interesting feature occurs around Fremantle to Bunbury for total 

water levels, indicating the importance of coastline topography. At Fremantle the tropical-

cyclone-induced total return levels do not exceed the extra-tropical generated levels below 

the 10,000-year return period, whereas further south at Bunbury they do. This is most 

likely because surges are enhanced in Geographe Bay, whereas the continental shelf is 

relatively narrow offshore of Fremantle.  

 



Technical Report  Estimating present day extreme water level 

exceedance probabilities around the coastline of Australia 

 

39 

To create a final dataset, suitable for coastal engineers and managers, we combined the 

results for stages 1 and 2. We did this by simply taking whichever return level was higher, 

from either stage 1 or 2, for different return periods. These values were then linearly 

interpolated to 1/60
th

 of a degree (~2 km) intervals around the coast. The combined 1,000-

year total water level is shown in Figure 29. 
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5 Concluding remarks 

This study, for the first time, has provided estimates of present day extreme total water 

level exceedance probabilities around the whole coastline of Australia, arising from 

combinations of mean sea level, astronomical tide and storm surges generated by both 

extra-tropical and tropical storms, but exclusive of surface gravity waves. A high-

resolution depth averaged hydrodynamic model was configured for the whole coastline of 

Australia and was used to generate a 61-year time-series of historic water levels around 

Australia. This predicted dataset was validated against measurements from tide gauge sites 

around Australia with long records and then used to estimate exceedance probabilities 

around the entire coastline. To more accurately include tropical cyclone-induced surges in 

the estimation of extreme total water level probabilities, which are underestimated in the 

multi-decadal hindcast because of the coarse meteorological forcing used, a statistical 

model of the tracks and central pressures of tropical cyclones was developed. This was 

then used to generate 10,000 years of synthetic tropical cyclone events in the Australian 

region, based on characteristics of tropical cyclone activity over about the last 40 years. 

Wind and pressure fields were derived for these synthetic events and were used to drive the 

hydrodynamic model. Annual maximum total levels for these synthetic events were 

calculated and these were used to estimate exceedance probabilities around the coastline. 

The exceedance probabilities calculated from the hindcast and synthetic tropical cyclone 

simulations were then combined to give a single estimate of present extreme water level 

probabilities around the whole coastline of Australia.  

 

In the first part of the study, a 61-year hindcast of water levels for the Australian 

continental shelf region was generated. The multi-decadal hindcast generated was then 

used to estimate current extreme water level AEP around the entire coastline of Australia. 

However, the long time-series of historic water levels could be used for a wide range of 

other purposes. For example, the long historic water levels simulated by Flather et al. 

(1998) for the UK were used by: Butler et al. (2007) to assess decadal variations in storm 

surges in the North Sea; Wakelin et al. (2003), Tsimplis et al. (2005) and Woodworth et al. 

(2007) to examine the influence of large scale climate variability, represented by the North 

Atlantic Oscillation, on sea level; and Woodworth et al. (2009) to remove variability in 

time-series of annual mean sea level in order to improve longer-term sea-level rise trend 
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estimates. McMillan et al. (2011) used their long predicted historic water level dataset for 

the British Isles to create design storm surges around the UK. These can be used in various 

engineering applications. These examples demonstrate the usefulness of these predicted 

multi-decadal water level datasets and it is hoped this dataset will be more widely used in 

the future. In the future we hope to improve the hindcast by: incorporating higher 

resolution bathymetric data onto the model grid; validating the model with water level 

measurements from a greater number of tide-gauge sites; and running the model using 

longer (i.e. Compo et al., 2011) or higher resolution (Saha et al., 2010) meteorological 

reanalysis, that have recently become available.  

 

The present day extreme total water level exceedance probabilities, estimated in this study, 

are freely available for coastal engineers and managers via a web-based tool 

(www.sealevelrise.info). To ensure this information is best used it is important to emphasis 

several key points: 

1. The hydrodynamic modelling was undertaken on grid with a resolution of 1/12
th

 of 

a degree (~10 km) around the coasts (Figure 2) and the results were then 

interpolated down to 1/60
th

 of a degree (~2 km) intervals along the whole 

coastline. The current model resolution accurately predicts water levels along open 

stretches of coastline and in large bays and inlets, but is not likely to resolve water 

level propagation in narrow bays, inlets and estuaries (e.g. the Swan or Peel 

Harvey Estuaries in Western Australia). In these regions, much higher resolution 

(in many cases <100 m) models are needed to adequately capture the water level 

propagation into and through the system (see MacPherson et al., 2011). 

2. Surface gravity wave effects have been neglected in this study. Higher than normal 

water levels can occur at the coast during storm events through wave setup and 

wave runup, but the relative contribution of these to extremes in a given area 

depends on a number of factors including: continental shelf width; coastal 

orientation with respect to the prevailing winds during storm events; and coastal 

features such as headlands, bays and estuaries which can either shelter the coast or 

amplify extreme sea levels (O’Grady and McInnes, 2010). An Australia wide 

assessment of wave setup and runup is needed and would enhance the result of this 

current study.  

http://www.sealevelrise.info/
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3. The study focused on estimating present day extreme water level exceedance 

probabilities. There is strong observation evidence that mean sea levels are rising 

(Church and White, 2011) and that extreme events are increasing as a result (Lowe 

et al., 2010). This must be taken into account when estimating future exceedance 

probabilities. This point is discussed in more detail below.  

4. We recognise that several studies were undertaken prior to this current study that 

have estimated extreme water level recurrence intervals on local and regional 

scales around Australia. In the future we hope to conduct a detailed comparison of 

the estimates between these different studies and our study.  

 

Finally, we now briefly review how the exceedance probabilities of extreme water levels 

around Australia might alter in the future with climate change. Over the 20
th

 century, tide-

gauge observations show that global mean sea level on average rose by 17 cm (i.e. 1.7 

mm/year) as a result of climate-change-related processes including the melting of land-

based ice and the thermal expansion of sea water (Bindoff et al., 2007). One of the most 

certain consequences of anthropogenic climate change, according to all of the 

Intergovernmental Panel on Climate Change’s (IPCC) assessments (i.e. Meehl et al., 2007; 

Seneviratne, 2012), is that the global average rate of rise will very likely accelerate over 

the 21
st
 century and beyond. The IPCC’s Fourth Assessment Report (AR4) projected a 

global mean sea level rise of 0.18 to 0.79 m from 1990 to the 2090’s, if 0.2 m is added to 

the upper limit to account for processes involving land ice in Greenland and Antarctica that 

were not fully included in the models for this period (Meehl et al. 2007). The lower end of 

the range is approximately consistent with the continuation of the average rate of rise 

observed by tide gauges over the 20
th

 century, whilst the upper value represents a 

significant increase on 20
th

 century rates. Since the publication of the AR4 in 2007, the 

subject of mean sea level rise has received considerable attention, and there is a view that 

larger rises (>1m) are possible (Rahmstorf, 2007; Horton et al., 2008; Grinsted et al., 2010; 

Vermeer and Rahmsdorf, 2009; Jevrejeva et al., 2010; Nicholls et al., 2011). 

 

As Haigh et al. (2011a) point out; changes in mean sea level affect extreme sea levels in 

two ways: 
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(a) Directly: a rise (or fall) in mean sea level will result in a lower (or higher) surge 

elevation at high tide being necessary to produce a sea level high enough to cause 

flooding; 

(b) Indirectly: changes in mean sea level alter water depths and hence modify the 

propagation and dissipation of the astronomical tide and surge components of sea 

level. 

 

In addition, extreme sea levels can change as a result of variations in the strength and 

tracks of weather systems which alter the magnitude, duration and intensity of storm 

surges. Two quasi-global assessments (Woodworth and Blackman, 2004; Menendez and 

Woodworth; 2010) of past changes in extreme sea levels have found that extremes have 

increased at most locations around the world over the last century, but largely as a result of 

changes in mean sea level (i.e. direct changes), and the results of several regional studies 

(see Lowe et al. (2010) for a review) are in agreement. This implies that indirect changes 

and variations in storminess have been relatively small at most locations over the past 

century, but there are some locations like in the German Bight (Mudersbach et al., in 

review) for example, where this appears not to be the case.  

 

Small increases in mean sea level can result in relatively large increases in the frequency of 

extreme events. McInnes et al. (2011a; 2011b) showed that a mean sea level rise of 0.1 m 

(the approximate mid-range estimate for sea level rise projected for 2030) increased the 

frequency of an extreme sea level event by between 5 and 10 times for Victoria and 

Tasmania, respectively (i.e. a 1-in-100 year event will become a 1-in-10 to 20 year event). 

For Western Australia, Haigh and Pattiaratchi (2010b) showed that a mean sea level rise of 

0.18 m (lower end of the IPCC’s AR4 projections for 2100) increased the frequency of 

extreme sea level events by between 10 and 50 times. Changing weather patterns will also 

influence return periods of extreme events. These have recently been investigated over 

southern Australia by Colberg and McInnes (2012). In general, future weather pattern 

changes were found to decrease extreme (95
th

 percentile) sea levels by up to 0.1 m along 

the southern Australian coast and by smaller amounts further west. These changes in 

extreme sea level are comparatively small, compared with the AR4 projected range of sea 

level changes over the period from 1990 to 2090. Harper et al. (2009) reported on recent 

studies on the tropical east coast of Australia that, like this study, utilise synthetically 
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generated tropical cyclones to force a hydrodynamic model. Mean sea level rise was found 

to produce a larger contribution to changes in future 1-in-100 year sea level extremes than 

projected changes in tropical cyclone intensity. Bases on these findings, and others for 

different parts of the world (again see Lowe et al. (2010) for a review), it seems reasonable 

to assume that increases in mean sea level will dominate changes in the extreme total water 

level exceedance probabilities for Australia, and that further increases due to changes in 

storm patterns will be small by comparison.  

 

Hunter (2010) recently developed a technique for combining the uncertainties in existing 

extreme water levels with the uncertainties in the projections of mean sea level rise. The 

results are given in the form of exceedance probability curves as a function of still water 

level. Each curve represents the likelihood of one or more flooding events at a given height 

and at one location, over a specified period during the 21
st
 century, under conditions of a 

prescribed emission scenario. More recently, Hunter (2011) described a simple extension 

of this technique which enables the objective choice of a vertical allowance for mean sea-

level rise (i.e. the amount by which coastal assets need to be raised), given the statistics of 

present extreme water levels and projections of mean sea-level rise. The method preserves 

the expected frequency of flooding events if this allowance is applied as mean sea-level 

rises. These techniques have been implemented into the web-based tool mentioned earlier, 

which uses the results of this current study. 
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Table 1: Key parameterizations used in the Mike21 model. 

Parameter Description 
 

Open tidal boundaries Water level time series derived from eight primary (M2, S2, N2, 

K2, K1, O1, P1, Q1), two long period (Mf, Mm) and three non-

linear (M4, MS4, MN4) tidal constituents from the TPXO7.2 

global ocean model, plus 16 other minor constituents, inferred 

using the eight primary constituents. 
 

Meteorological forcing Spatially varying mean sea level pressure and u and v 

components of 10 m wind field from the US National Center 

for Environmental Prediction’s/National Center for 

Atmospheric Research’s global reanalysis on a 2.5
o
 x 2.5

 o
 grid 

every 6 hours.  
 

Bed friction Manning number, constant value 0.031 (default Mike21 value) 
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Table 1: Details of the tide gauge records used for model validation. 

Site 
Number 

Site Name Latitude 
(decimal 
degree) 

Longitude 
(decimal 
degree) 

Period Number of 
Years 

(range) 
1 Point Lonsdale -38.2933 144.6148 1962-2009  48 (48) 
2 Geelong -38.0920 144.3933 1966-2009  43 (44) 
3 Williamstown -37.8657 144.9165 1966-2009  44 (44) 
4 Fort Denison -33.8500 151.2333 1914-2009  95 (96) 
5 Newcastle -32.9333 151.7833 1957-2009  46 (54) 
6 Brisbane -27.3667 153.1667 1977-2009  33 (33) 
7 Bundaberg -24.7717 152.3800 1966-2009  44 (44) 
8 Mackay -21.2667 149.3167 1966-2009  38 (44) 
9 Townsville -19.2500 146.8333 1959-2009  51 (51) 
10 Cairns -16.9167 145.7833 1966-2009  32 (44) 
11 Milner Bay -13.8600 136.4158 1993-2009 17 (17) 
12 Darwin -12.4719 130.8458 1966-2009  44 (44) 
13 Wyndham -15.4500 128.1000 1966-2009  43 (44) 
14 Broome -18.0008 122.2183 1966-2009  41 (44) 
15 Port Hedland -20.3000 118.5833 1966-2009  44 (44) 
16 Carnarvon -24.8833 113.6167 1965-2009  41 (45) 
17 Geraldton -28.7833 114.5833 1965-2009  45 (45) 
18 Fremantle -32.0557 115.7373 1897-2009 108 (113) 
19 Bunbury -33.3167 115.6500 1966-2009  43 (44) 
20 Albany -35.0333 117.8889 1966-2009  44 (44) 
21 Esperance -33.8709 121.8954 1966-2009  44 (44) 
22 Thevenard -32.1490 133.6416 1966-2009  44 (44) 
23 Port Lincoln -34.7159 135.8701 1965-2009  45 (45) 
24 Port Pirie -33.1776 138.0117 1941-2009  69 (69) 
25 Port Adelaide (Outer) -34.7798 138.4807 1940-2009  70 (70) 
26 Port Adelaide (Inner) -34.8500 138.5000 1933-1999  47 (67) 
27 Victor Harbour -35.5625 138.6354 1965-2009  45 (45) 
28 Hobart -42.8833 147.3333 1962-2009  40 (48) 
29 George Town -41.1083 146.8167 1967-1997  31 (31) 
30 Burnie -41.0500 145.9147 1952-2009 43 (58) 
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Table 3: Mean absolute amplitude and phase errors of the main eight tidal constituents, 

estimated from the measured and predicted datasets, for the 30 validation sites. The 

numbers in brackets are the mean absolute differences between the measured and 

TPOX7.2 global ocean tidal model for the 30 validation sites. 

Tidal constituent Mean absolute amplitude 

error (meters) 

Mean absolute phase error 

(degrees) 

M2 0.106 (0.181) 10 (15) 

S2 0.057 (0.086) 11 (16) 

N2 0.017 (0.047) 12 (15) 

K2 0.015 (0.032) 11 (18) 

K1 0.022 (0.049) 9 (13) 

O1 0.030 (0.031) 6 (13) 

Q1 0.014 (0.022) 6 (14) 

P1 0.007 (0.015) 9 (18) 
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Table 4: Root mean square errors (RMSE), mean standard deviation errors (STD) and correlation coefficients for the hourly mean sea level (MSL), 

astronomical tide, surge and total water levels for 1995, at the 30 validation sites. Units are in meters. 

Site 

number 

Site name RMSE STD Correlation coefficient 

MSL TIDE SURGE TOTAL MSL TIDE SURGE TOTAL MSL TIDE SURGE TOTAL 

1 Point Lonsdale 0.06 0.24 0.04 0.25 0.04 0.14 0.03 0.15 0.39 0.79 0.90 0.75 

2 Geelong 0.09 0.09 0.05 0.13 0.04 0.06 0.04 0.10 0.61 0.90 0.85 0.86 

3 Williamstown 0.06 0.08 0.04 0.11 0.04 0.05 0.03 0.08 0.65 0.89 0.93 0.87 

4 Fort Denison 0.05 0.05 0.05 0.09 0.05 0.03 0.04 0.07 0.25 0.99 0.68 0.97 

5 Newcastle 0.04 0.05 0.05 0.08 0.02 0.04 0.04 0.06 0.28 0.99 0.69 0.97 

6 Brisbane 0.05 0.32 0.06 0.33 0.04 0.17 0.05 0.19 0.40 0.77 0.38 0.76 

7 Bundaberg 0.03 0.13 0.06 0.14 0.02 0.08 0.04 0.10 0.80 0.98 0.25 0.98 

8 Mackay 0.04 0.45 0.06 0.45 0.01 0.27 0.05 0.28 0.94 0.93 0.55 0.93 

9 Townsville 0.04 0.07 0.05 0.10 0.04 0.06 0.04 0.08 0.88 0.99 0.60 0.99 

10 Cairns 0.04 0.09 0.05 0.11 0.04 0.07 0.04 0.09 0.75 0.98 0.42 0.98 

11 Darwin 0.08 0.11 0.05 0.14 0.05 0.07 0.05 0.11 0.98 0.90 0.79 0.91 

12 Milner Bay 0.08 0.22 0.05 0.24 0.05 0.21 0.04 0.22 0.91 0.98 0.57 0.98 

13 Wyndham 0.09 0.36 0.10 0.37 0.02 0.23 0.10 0.24 0.98 0.98 0.21 0.98 

14 Broome 0.06 0.17 0.05 0.18 0.04 0.10 0.04 0.12 0.92 1.00 0.71 1.00 

15 Port Hedland 0.04 0.18 0.04 0.19 0.03 0.15 0.03 0.15 0.86 0.99 0.78 0.99 

16 Carnarvon 0.14 0.09 0.05 0.16 0.05 0.06 0.04 0.11 0.65 0.95 0.84 0.92 

17 Geraldton 0.13 0.04 0.05 0.14 0.05 0.03 0.04 0.09 0.88 0.95 0.91 0.90 

18 Fremantle 0.12 0.05 0.05 0.13 0.05 0.03 0.04 0.09 0.83 0.93 0.89 0.87 

19 Bunbury 0.11 0.05 0.06 0.13 0.05 0.03 0.04 0.09 0.86 0.94 0.88 0.88 

20 Albany 0.07 0.04 0.05 0.09 0.04 0.03 0.04 0.07 0.87 0.97 0.88 0.92 

21 Esperance 0.11 0.04 0.05 0.12 0.05 0.03 0.04 0.08 0.82 0.97 0.90 0.92 

22 Thevenard 0.05 0.11 0.07 0.13 0.04 0.08 0.05 0.10 0.89 0.94 0.89 0.93 

23 Port Lincoln 0.13 0.08 0.05 0.15 0.04 0.06 0.04 0.10 0.92 0.96 0.92 0.94 

24 Port Pirie 0.04 0.19 0.08 0.21 0.02 0.13 0.07 0.15 0.87 0.97 0.87 0.95 

25 Port Adelaide (Outer) 0.11 0.22 0.06 0.24 0.04 0.14 0.05 0.17 0.95 0.94 0.92 0.93 

26 Port Adelaide (Inner) 0.05 0.20 0.06 0.22 0.03 0.13 0.05 0.14 0.96 0.94 0.93 0.94 

27 Victor Harbour 0.09 0.07 0.05 0.12 0.04 0.06 0.04 0.09 0.92 0.93 0.92 0.90 

28 Hobart 0.08 0.07 0.06 0.11 0.03 0.06 0.05 0.09 0.90 0.96 0.79 0.93 

29 George Town 0.05 0.28 0.06 0.29 0.03 0.15 0.05 0.17 0.80 0.93 0.74 0.92 

30 Burnie 0.04 0.15 0.04 0.17 0.02 0.09 0.04 0.10 0.68 0.99 0.84 0.99 
 

All Mean 0.07 0.14 0.05 0.18 0.04 0.10 0.04 0.12 0.78 0.94 0.75 0.92 
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Table 5: Comparison of the 10-, 50- and 100-year measured and predicted return levels for 2010 (m, relative to AHD) estimated using the AMM fitted 

to the GEV distribution, at the 30 validation sites.  

Site 

Number 

Site Name 10-year return period 50-year return period 100-year return period 

Meas. Mod. Abs. Dif. Meas. Mod. Abs. Dif. Meas. Mod. Abs. Dif. 

1 Point Lonsdale 1.18 1.18 0.00 1.27 1.31 0.04 1.32 1.43 0.11 

2 Geelong 1.02 1.00 0.02 1.08 1.11 0.03 1.11 1.21 0.10 

3 Williamstown 1.03 1.08 0.04 1.10 1.23 0.13 1.13 1.34 0.21 

4 Fort Denison 1.35 1.31 0.04 1.46 1.37 0.09 1.55 1.41 0.14 

5 Newcastle 1.25 1.20 0.04 1.34 1.26 0.08 1.42 1.30 0.11 

6 Brisbane 1.65 1.61 0.04 1.69 1.64 0.05 1.70 1.65 0.05 

7 Bundaberg 2.02 1.94 0.08 2.11 2.00 0.11 2.17 2.05 0.11 

8 Mackay 3.75 3.67 0.08 3.96 3.79 0.17 4.12 3.86 0.26 

9 Townsville 2.40 2.29 0.12 2.62 2.35 0.26 2.80 2.39 0.41 

10 Cairns 1.96 1.87 0.09 2.08 1.93 0.15 2.14 1.96 0.18 

11 Darwin 1.66 1.60 0.06 1.92 1.82 0.09 2.13 2.02 0.11 

12 Milner Bay 3.97 3.94 0.03 4.08 3.99 0.09 4.15 4.01 0.13 

13 Wyndham 4.12 4.08 0.03 4.33 4.30 0.03 4.58 4.60 0.03 

14 Broome 5.25 5.12 0.14 5.35 5.15 0.20 5.38 5.15 0.22 

15 Port Hedland 3.76 3.64 0.12 4.04 3.75 0.29 4.30 3.83 0.47 

16 Carnarvon 1.29 1.18 0.11 1.43 1.25 0.19 1.53 1.30 0.23 

17 Geraldton 1.06 0.97 0.08 1.19 1.11 0.08 1.27 1.25 0.02 

18 Fremantle 1.11 1.00 0.11 1.27 1.11 0.16 1.39 1.22 0.17 

19 Bunbury 1.18 1.07 0.11 1.37 1.20 0.17 1.52 1.32 0.20 

20 Albany 1.01 0.97 0.04 1.06 1.02 0.05 1.08 1.04 0.04 

21 Esperance 1.18 1.15 0.03 1.24 1.23 0.00 1.26 1.29 0.03 

22 Thevenard 1.91 1.93 0.01 2.05 2.16 0.11 2.13 2.37 0.24 

23 Port Lincoln 1.67 1.57 0.10 1.86 1.76 0.09 1.99 1.98 0.00 

24 Port Pirie 2.61 2.60 0.01 2.86 2.95 0.08 3.03 3.28 0.25 

25 Port Adelaide (Outer) 2.39 2.37 0.03 2.62 2.64 0.02 2.78 2.89 0.11 

26 Port Adelaide (Inner) 2.26 2.23 0.02 2.44 2.49 0.05 2.56 2.73 0.17 

27 Victor Harbour 1.51 1.46 0.05 1.61 1.60 0.02 1.67 1.70 0.04 

28 Hobart 1.18 1.14 0.04 1.36 1.27 0.09 1.52 1.36 0.16 

29 George Town 1.84 1.84 0.00 1.93 1.99 0.05 1.98 2.11 0.13 

30 Burnie 1.92 1.91 0.01 2.02 2.06 0.04 2.08 2.19 0.11 
 

All   Mean 0.06  Mean 0.10  Mean 0.15 
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Table 6: Largest recorded storm surge events, ranked in order of surge height, resulting from a tropical cyclone at 17 of the study tide-gauge sites.  

Tide gauge 
Analysis period Date of 

largest surge 
Surge ranking 

Surge level 

(m) 

Total water 

level ranking 
Total level (m AHD) Cyclone 

Townsville 1970-2008 23/12/1971 1 2.84 1 2.53 Althea 

Broome 1970-2008 19/04/2000 1 2.26 45 4.83 Rosita 

Port Headland 1970-2008 21/01/1973 1 2.06 1 3.81 Kerry 

Bunbury 1970-2008 04/04/1978 1 1.57 1 1.76 Alby 

Wyndham 1970-2008 29/01/1998 1 1.47 2 4.00 Les 

Darwin 1970-2008 24/12/1974 7 1.39 <100 2.43 Tracy 

Milner Bay 1993-2008 10/02/2001 1 1.27 1 2.02 Winsome 

Carnarvon 1960-2008 13/03/1979 2 1.19 1 1.65 Hazel 

Bundaberg 1970-2008 15/03/1992 1 0.98 11 1.87 Fran 

Fremantle 1970-2008 04/04/1978 1 0.84 3 1.01 Alby 

Mackay 1970-2008 28/02/1979 11 0.78 <100 -1.57 Kerry 

Cairns 1970-2008 27/02/2000 1 0.78 <100 0.71 Steve 

Geraldton 1970-2008 04/04/1978 4 0.69 32 0.71 Alby 

Newcastle 1970-2008 04/02/1990 8 0.47 <100 0.32 Nancy 

Albany 1970-2008 04/04/1978 10 0.43 <100 0.26 Alby 

Esperance 1970-2008 04/04/1978 87 0.42 <100 0.59 Alby 

Brisbane 1977-2008 04/02/1990 12 0.37 <100 0.44 Nancy 
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Table 7: Details of the tropical cyclones used for model validation.  

Name Season Maximum surge 

height (m) 

Tide-gauge 

Rosita 1999 2.26 Broome 

Althea 1971 2.84 Townsville 

Tracy 1974 1.39 Darwin 

Steve 1999 0.78 Cairns 

Les 1997 1.47 Wyndham 

John 1999 1.48 Port Headland 

Kerry 1972 2.06 Port Headland 

Hazel 1978 1.19 Carnarvon 

Alby 1977 1.57 Bunbury 
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Figure 1: Location of tide gauge sites around the coastline of Australia with high 

frequency (at least hourly) water level records longer than 30 years. Note: Milner Bay does 

not have 30 years of data but has been included so that there is a validation site in the Gulf 

of Carpentaria.   

 

 

Figure 2: Hydrodynamic model grid and bathymetry configured in Mike21 FM. 
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Figure 3: NCEP/NCAR mean sea level pressure fields and 10 m wind vectors every 12 hours for a large extra-tropical storm event in May 2003. 

 

 



Technical Report  Estimating present day extreme water level 

exceedance probabilities around the coastline of Australia 

 

65 

Figure 4: Comparison of the measured and predicted amplitudes of the 8 main tidal 

constituents for the 30 validation sites for 1995. 
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Figure 5: Comparison of the measured and predicted phases of the 8 main tidal 

constituents for the 30 validation sites for 1995. 
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Figure 6: Comparison of the measured (blue) and predicted (red) surge component for 1995 at select sites around southern Australia.  
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Figure 7: Comparison of the measured (blue) and predicted (red) surge component at Thevenard for the period 1995 to 1999. 
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Figure 8: Time-series of the annual root mean square error (RMSE), standard deviation 

error (STD) and correlation coefficient (Corr Coef) between the measured and predicted 

storm surge component at Fremantle over the 61-year hindcast period.  
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Figure 9: (a) Mean range in the seasonal mean sea level cycle; and (b) Month during 

which the seasonal mean sea level cycle is largest.  

 

 

 



Technical Report  Estimating present day extreme water level 

exceedance probabilities around the coastline of Australia 

 

71 

Figure 10: Comparison of the measured (blue) and predicted (red) total water level (a) 

frequency distribution and (b) cumulative frequency distribution curves for Albany, Port 

Lincoln, Burnie and Newcastle.  
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Figure 11: Comparison of the measured (blue) and predicted (red) return period curves for 2010 (relative to AHD) at the 30 validation sites estimated 

using the AMM fitted to a GEV distribution. 
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Figure 12: Return period curves for 2010 (relative to AHD) estimated using the AMM 

fitted to a GUM and GEV distribution and the RLM fitted to a GEV distribution, derived 

from the measured sea level data at (a) Geraldton and (b) Fort Denison. The maximum-

recorded water level has been plotted against the length of the record (i.e. 40 years) and is 

shown as a green square. 
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Figure 13: 100-year total water return levels for 2010 (relative to AHD) at the model 

coastal grid points estimated using the AMM fitted to a GUM distribution. The estimates 

from the tide gauge records are also shown (circles). 

 

 

 

 



Technical Report Estimating present day extreme water level exceedance probabilities around the coastline of Australia 

 

75 

Figure 14: The tracks of the tropical cyclones responsible for the ten largest cyclone-induced surge events that made it into the top 100 largest surge 

events identified at each study tide gauge site. 

 



Technical Report  Estimating present day extreme water level 

exceedance probabilities around the coastline of Australia 

 

76 

Figure 15: Measured and predicted wind speed, direction and atmospheric pressure time-

series for (top to bottom) Arlington Reef, Flinders Reef, Lucinda Point and Townsville 

meteorological stations during the passage of tropical cyclone Yasi in Feb 2011.  
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Figure 16: Tropical cyclone tracks for Althea, Rosita and Yasi.  

 

 

Figure 17: Comparisons between the measured (blue) and predicted (red) surge time-

series at (a) Townsville for cyclone Althea and (b) Broome for cyclone Rosita.  
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Figure 18: Comparisons between the measured (blue) and predicted (red) surge time-

series for cyclone Yasi at four tide gauges in Queensland. Each time series has been 

arbitrarily offset for presentation purposes.  
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Figure 19: Tide-surge interaction at Townsville associated with tropical cyclone Rosita. 

(a) Total water levels for the four different tidal states; (b) surge levels for the four 

different tidal states and surge only simulation; (c) surge levels for the four different tidal 

states and surge only simulation, but re-adjusted for the time offset.  
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Figure 20: Tide-surge interaction at Broome associated with tropical cyclone Althea. (a) 

Total water levels for the four different tidal states; (b) surge levels for the four different 

tidal states and surge only simulation; (c) surge levels for the four different tidal states and 

surge only simulation, but re-adjusted for the time offset. 
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Figure 21: Synthetic tropical cyclone tracking (hatched) and genesis and tracking (cross-

hatched) domains. Wind statistics validation locations also shown. 
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Figure 22: Measured (dot) and predicted (line) wind speed return period curves for 2010 

at select locations around the Australian coastline. Local wind speed adjustments are 

applied to the predicted data. 
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Figure 23: (a) Observed tropical cyclone tracks for the 39 year period between 1970 and 

2008; (b) Synthetic tropical cyclone tracks for a 39-year period; and (c) Synthetic tropical 

cyclone tracks for a 1,000 year period.  
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Figure 24: 1,000-year surge return levels for 2010 (relative to AHD) at the model coastal grid points estimated in (a) stage 1 and (b) stage 2 (tropical 

cyclones).  
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Figure 25: Return periods (years) at which the tropical cyclone generated surges are larger 

than the extra-tropical generated surges at the model coastal grid points.  
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Figure 26: 1,000-year total water return levels for 2010 (relative to AHD) at the model coastal grid points estimated in (a) stage 1and (b) stage 2 (i.e. 

tropical cyclones). 
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Figure 27: Comparison of the return period curves for 2010 (relative to AHD) for stage 1 (blue) and stage 2 (red) at the 30 validation sites. 
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Figure 28: Return periods (years) at which the tropical cyclone generated total water 

levels are larger than the extra-tropical generated total water levels at the model coastal 

grid points. 
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Figure 29: Combined (from stages 1 and stage 2) 1,000-year total water return levels for 

2010 (relative to m AHD) at the model coastal grid points. 
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